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Abstract

An analytical method is presented for evaluation of the steady state periodic behavior of non-linear
systems. This method is based on the substructure synthesis formulation and a multiple scales procedure,
which is applied to the analysis of non-linear responses. A complex non-linear system is divided into
substructures, of which equations are approximately transformed to modal co-ordinates including non-
linear term under the reasonable procedure. Then, the equations are synthesized into the overall system and
the solution of the non-linear system can be obtained. Based on the method of multiple scales, the proposed
procedure reduces the size of large-degree-of-freedom problem in solving the non-linear equations.
Feasibility and advantages of the proposed method are illustrated by the application of the analytic
procedure to the non-linear rotating machine system as a large mechanical structure system. Results
obtained are reported to be an efficient approach with respect to non-linear response prediction when
compared with other conventional methods.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years, machines of industrial field used for the gas turbine for propulsion of an
aircraft, power-plant turbine, etc. tend toward the high speed and lightweight. These conditions
may cause the trouble of non-linear vibration. In the present rotating machinery, non-linear
vibration phenomena sometimes occur in the shrinkage fit rotor, in the assembly rotor and in the
power-plant rotor with coil. Non-linear vibration phenomena also occur in a high polymer rotor,
which is used for lightweight construction of an aircraft. Vibration analysis of such rotor systems
is usually performed by the finite element method (FEM) with linear model. When a large
amplitude vibration occurs, however, linearized spring and damping coefficients cannot model the
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complicated non-linear rotor system. It is important to consider the non-linear characteristics in
vibration analysis and design of rotor systems. On the other hand, it is necessary that a high-speed
rotor system used for the gas turbine for propulsion of an aircraft, power-plant turbine, etc.
promptly pass a critical speed. Accordingly, the casing is often modelled elastically to decrease the
critical speed. When such a rotor-bearing-casing system vibrates, the casing is excited to contact
with the rotor and there is a danger that the bearing will be damaged. Therefore, the investigation
of the response of a rotating machine is very important from the viewpoint of stable operation. To
construct a real mathematical model in vibration analysis, dynamic characteristics of rotor,
bearing and casing should be considered. In the analysis of a large complex degrees of freedom
(d.o.f.) mechanical system, the substructure synthesis method (SSM) has been studied for efficient
vibration analysis, Iwatsubo et al. [1] proposed an approximate analytical method to analyze the
dynamic problems of a non-linear rotor-bearing-casing system using the SSM and a perturbation
method. They applied the SSM technique to reduce the overall size of the problem and obtained
approximate solutions by applying the perturbation method. Moon et al. [2,3] presented an
analytical method to analyze the vibration of a non-linear rotor-bearing-casing system by
applying the perturbation method. They considered the non-linearity in the shaft and bearing part
and considered the effect of non-linear sensitivity in the subsystem. They derived the formulation
of perturbation first order under the condition that the exciting force is near the first critical
frequency of the system. Moon et al. [4] proposed an approximate analytical method to analyze
the dynamic problems of a non-linear structure system using the SSM and a harmonic balance
method.
However, a non-linear vibration problem needs more accurate analysis in some rotor system,

which is used in the jet engine of an aircraft or some power-plant turbine. Such a high-speed and
lightweight mechanical system shows more complex non-linear vibration. In the analysis of non-
linear systems, there are a lot of analyzed research works using the method of multiple scales for
the single d.o.f. of non-linear vibration system, and its application to the multi-d.o.f. system are
reported [5,6]. However, the study, which applied the method of multiple scales to the non-linear
vibration analysis of rotor system, has not been reported yet.
Therefore, this paper presents an analytical technique based on the method of multiple scales

theory and the mode superposition principle for the dynamic analysis of non-linear mechanical
systems. By applying the method of multiple scales, the governing equations of the complex non-
linear system attains a compact form and can be solved. Furthermore, the proposed method
enhanced the previous studies [1–3] such that it can be applied to more accurate analysis
comparing with the perturbation method of the previous studies. Theoretical basis of the
proposed method is presented in the derivation of the response of a non-linear system. The
proposed method is then applied to a non-linear mechanical system in order to demonstrate
the performance of the method in respect of the computational accuracy by comparing the results
with those from other conventional methods.

2. Method of analysis

A structural system consists of a set of interconnected components that have segments with
distributed mass and elasticity and non-linear parts. Non-linear structures can be divided into
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linear and non-linear substructures with assembling regions. The first stage in the analysis process,
therefore, is the substructuring of the original non-linear system into some components that can
be modelled separately with linear and non-linear sets. Small substructures may be easier to model
and will eventually result in an economical analysis procedure.

2.1. Modelling of the system

In this paper, a rotor-bearing-casing system as shown in Fig. 1 is considered. The rotor is
supported by bearings that are fixed on the casing. The casing and the foundation are elastically
connected. The rotor has the material non-linearity. For dynamic analysis of this kind of complex
system, the SSM can be applied. The whole system is divided into three components. The rotor
has non-linear restoring force so that it is regarded as a non-linear component, while the casing is
considered to be a linear component and the bearing is modelled as a linear assembling
component.
The co-ordinate system of the rotor-bearing-casing system is shown in Fig. 1. The o–xyz co-

ordinate system is fixed in space, where the x-axis is perpendicular to directions of shaft and
casing, the y-axis is vertically upwards, and the z-axis is along the shaft and the casing for
consistency of modelling. The acceleration of gravity is ignored for simplicity. The rotor
gyroscopic effect caused by non-linear restoring force is not considered in this study for simplicity
of the non-linear analysis. Instead, a proportional damping model is considered in the equations
of motion. The shaft and casing components are modelled by using the FEM. A common form of
excitation of a rotor system is the mass unbalance of the rotor. Then assumption of a steady state
response is reasonable. The excitation forces at a given station by the imbalance mass mi at a
distance ei from the rotor geometric center are given by

f1FuðO; tÞg ¼
Fx

Fy

( )
¼

mieiO2 cosðOt þ fiÞ

mieiO2 sinðOt þ fiÞ

( )
ði ¼ 1; 2; 3;yÞ; ð1Þ

where f; O are the phase quantity and the rotating frequency. The excitation force by the mass
unbalance of the rotor can be treated as a harmonic excitation force. In general, the response
shows well the non-linear characteristics around the natural frequency in the non-linear system, as
well observed in the single-d.o.f. system. Especially in the rotor system, the dynamic behavior

Fig. 1. Rotor-bearing-casing system.
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around the critical speed is very important where most of the troubles occur. Therefore, it is
needed to quickly pass the critical speed without troubles. Because of these reasons, the exciting
frequency around the first natural frequency of the system is considered. The non-linear restoring
force is transformed into modal co-ordinates under the condition that the excitation force is near
the first natural frequency [2–4]. The non-linear term is handled with the MS method. The
excitation force of the casing component is treated as the general force Fc:

2.2. Modelling of non-linear component

When the rotor is modelled by the FEM, the characteristic of non-linear restoring force for
each element is based on the relation that the stress of the element by bending moment is
represented by the sum of two terms, one that varies linearly with the strain plus another that
varies with the third power of the strain. The internal force is considered because the non-linear
component can be synthesized through the internal force with the other components. By
considering the boundary conditions, the equation of motion for the non-linear component can be
written as [2–4]

½1M�f1 .ug þ ½1K �f1ug þ e½KN �f1u3g ¼ f1FuðO; tÞg þ f1Fbg; ð2Þ

where [1M], [1K ] are the mass and stiffness matrices, respectively, {1FuðtÞ} is an external force
vector by unbalance of rotor, {1Fb} is an internal force vector, [KN ] {

1u3} is a non-linear term, and
e is a small parameter. Superscript denotes the non-linear component. The displacement vector
can be written as

f1ug ¼ fxi; yxi; yi; yyig
T ði ¼ 1; 2;y; nÞ; ð3Þ

where xi; yxi and yi; yyi are the displacements and rotations for the x direction and y direction in
the ith nodal point, and n is the number of nodes. Exactly to say, vibration modes of a non-linear
system are slightly different from those of a linear system. But for simplicity of analysis, they are
assumed to keep those of a linear one. Accordingly, the modal co-ordinate system can be obtained
using the modal matrix [1F] of the linear system. Then, the displacement can be transformed into
the modal co-ordinate {1x} system as

f1ug 	 ½1F�f1xg: ð4Þ

Substituting Eq. (4) into Eq. (2) and pre-multiplying both sides of Eq. (2) by ½1F�T; Eq. (2) is
expanded to the non-linear modal equation as

f1 .xg þ ½W1o2
W�f1xg þ e½1F�T½KN �f1u3g ¼ ef1fuðO; tÞg þ f1fbg; ð5Þ

where f1fugð¼ ½1F�Tf1FuðtÞgÞ; f1fbðtÞgð¼ ½1F�Tf1fbgÞ are the external and internal forces in modal
co-ordinates. Usually, ½1F�T½KN �f1u3g is not a diagonal matrix. This term will be changed into
modal co-ordinates in accordance with the reasonable procedure, as shown in Refs. [2–4]. Then, a
non-linear term can be derived as e½Wk0

NW�fx31g where ½Wk0
NW� is the diagonal matrix term when

the system is excited around the first natural frequency. Accordingly, the non-linear term is
approximated as a diagonal matrix resulting in an efficient analysis by adopting a small number of
lower frequency modes [9]. Here, the perturbation method is introduced to solve the non-linear
Eq. (5). The variant e½Wk0

NW� can be regarded as the perturbation parameter term, because the
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term is relatively smaller than ½W1o2
W�: Thus, f1xg can be expanded in terms of e

f1xg ¼ f1xð0Þg þ ef1xð1Þg þ e2f1xð2Þg þ?; ð6Þ

where superscripts ( � ) denotes the perturbation order. Substituting Eq. (6) into Eq. (5), and
arranging by e; the perturbed equations are evaluated as

f1 .xð0Þg þ ½W1o2
W�f1xð0Þg ¼ f1f ð0Þ

b g;

f1 .xð1Þg þ ½W1o2
W�f1xð1Þg ¼ f1fug þ f1fp1ð1x

ð0ÞÞg þ f1f ð1Þ
b g;

f1 .xð2Þg þ ½W1o2
W�f1xð2Þg ¼ f1fp2ð1x

ð0Þ2; 1xð1ÞÞg þ f1fp1ð1x
ð0ÞÞg þ f1f ð2Þ

b g; ð7Þ

where f1f ð0Þ
b g; f1f ð1Þ

b g and f1f ð2Þ
b g are perturbed internal forces, f1fp1g; f1fp2g include the non-linear

stiffness term as f1fp1ð1x
ð0Þg ¼ �½W1kNW�f1xð0Þ3g; f1fp2ð1x

ð0Þ2; 1xð1ÞÞg ¼ f�3½W1kNW�f1xð0Þ2 � 1xð1Þgg:
Here f1xð0Þ2 � 1xð1Þg is a perturbed modal displacement term which comes from the perturbation
zeroth order and perturbation first order.

2.3. Modelling of linear, assembling components and overall system

The casing is modelled as a linear substructure. After the eigenvalue analysis, the equation of
motion in the modal co-ordinates is obtained as

½WIW�f2 .xg þ ½W2w2
W�f2xg ¼ effcg þ f1fbg; ð8Þ

where ½W2w2
W� and ½WIW� are eigenvalue of linear substructure and identity matrices, respectively,

[fc] is the external force vector. The internal force is introduced in the equation because the linear
substructure can be assembled through the internal force with the other substructures. Even the
casing component is linear system, this component is perturbed as same as the non-linear
component, because the higher order harmonic oscillation which is occurring in the non-linear
component is translated through the higher order perturbed equation as

f2 .xð0Þg þ ½W2o2
W�f2xð0Þg ¼ �f2f ð0Þ

b g;

f2 .xð1Þg þ ½W2o2
W�f2xð1Þg ¼ ffcg � f2f ð1Þ

b g;

f2 .xð2Þg þ ½W2o2
W�f2xð2Þg ¼ �f2f ð2Þ

b g; ð9Þ

where f2f ð0Þ
b g; f2f ð1Þ

b g and f2f ð2Þ
b g are the perturbed internal forces.

As an assembling component, ball bearings are considered. Generally, there is a damping term
in the bearing, but it is ignored in this study for the simplified model of bearing in order to verify
the effect of non-linear restoring force. The restoring force of the bearing is modelled as a linear
force. In this case, the force and displacement are expressed as

½1kb1�f1xbg ¼ f1fbg; ½2kb2�f2xbg ¼ �f2fbg; ð10Þ

where ½jkbj� (j ¼ 1; 2) are the terms of bearing coefficient. f1fbg; f2fbg are the internal force
vectors of the non-linear component and linear component, respectively. fjxbg is the relative
displacements between the rotor and casing corresponding to the bearings. In order to solve the
overall equation, the small parameter is set equal to the perturbation parameter of the non-linear
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component. Then, the displacement is expressed as

fjxbg ¼ fjx
ð0Þ
b g þ efjx

ð1Þ
b g þ e2fjx

ð2Þ
b g ðj ¼ 1; 2Þ: ð11Þ

Accordingly, by using Eq. (11), the internal force vectors can be perturbed as

f1fbg ¼ f1f ð0Þ
b g þ e � f1f ð1Þ

b g þ e2 � f1f ð2Þ
b g;

f2fbg ¼ f2f ð0Þ
b g þ e � f2f ð1Þ

b g þ e2 � f2f ð2Þ
b g: ð12Þ

To reduce the size of overall equation, the SSM can be applied. In order to synthesize the components,
Eqs. (7), (9) and (12) are combined and rewritten according to the equation of order eðpÞ (p ¼ 0; 1; 2)

f.xðpÞg þ ½ %KðpÞ�fxðpÞg ¼ fF ðpÞðO; t; xð0Þ; xð1ÞÞg; ð13Þ

where ½ %KðpÞ� is the stiffness matrix of the overall system which is composed of all components

fxð0Þg ¼ ff1xð0ÞgT; f1xð0Þ
b gT; f2xð0Þ

b gT; f2xð0ÞgTg;

fF ð0Þg ¼ ff0gT; f�1f
ð0Þ

b gT; f2f ð0Þ
b gT; f0gTgT;

fxð1Þg ¼ ff1xð1ÞgT; f1xð1Þ
b gT; f2xð1Þ

b gT; f2xð1ÞgTg;

fF ð1Þg ¼ ff1fug
T þ f1fp1g

T; f�1f
ð1Þ

b gT; f2f ð1Þ
b gT; ff ð0Þ

c gTg;

fxð2Þg ¼ ff1xð1ÞgT; f1xð1Þ
b gT; f2xð1Þ

b gT; f2xð1ÞgTg;

fF ð2Þg ¼ ff1fp2g
T; f�1f

ð1Þ
b gT; f2f ð1Þ

b gT; f0gTg:

In order to apply the SSM, the transformation matrix is introduced [2–4]. The transformation
matrix is composed of ½fbi� (i ¼ 1; 2), the eigenvector matrix of the assembling region, which is
derived from the eigenvector of each component corresponding to the nodal point of bearing. By
substituting the transformation matrix into Eq. (13) and pre-multiplying, the overall equation of
order eðpÞ can be expressed as

1 .xðpÞi

2 .xðpÞi

( )
þ

½1o2
i � þ ½a1� ½a2�

½a3� ½2o2
i � þ ½a4�

" #
1xðpÞi

2xðpÞi

( )
¼

1f ðpÞ
Z

2f ðpÞ
Z

( )
¼ ff ðpÞ

Z g; ð14Þ

½a1� ¼ ½fb1�
T½1kb1�½fb1�; ½a2� ¼ ½fb1�

T½2kb1�½fb2�; ½a3� ¼ ½fb2�
T½1kb2�½fb1�; ½a4� ¼ ½fb2�

T½2kb2�½fb2�:

The external force term of order eðPÞ is obtained as

ff ð0Þ
Z g ¼

½fa1�
T � f0gT

½fa2�
T � f0gT

( )
;

ff ð1Þ
Z g ¼

½fa1�
T � ðf1fp1g

T þ f1fug
TÞ þ ½fb1�

T � f1f ð1Þ
b g

½fa2�
T � f2f ð0Þ

c gT þ ½fb2�
T � f2f ð1Þ

b gT

( )
;

ff ð2Þ
Z g ¼

½fa1�
T � f1fp2g

T þ ½fb1�
T � f1f ð2Þ

b g

½fa2�
T � f0g þ ½fb2�

T � f2f ð2Þ
b g

( )
:
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By applying the modal analysis technique fxg ¼ ½FZ�fZg; Eq. (14) can be solved, where ½FZ� is the
modal matrix of the overall structure.

f.Zð0Þg þ ½Wo2
ZW�fZð0Þg ¼ f0g;

f.Zð1Þg þ ½Wo2
ZW�fZð1Þg ¼ �½Q�f’Zð0Þg þ fGg � ½P�fZð0Þ3g;

f.Zð2Þg þ ½Wo2
ZW�fZð2Þg ¼ �½Q�f’Zð1Þg � 3½P�fZð0Þ2 � Zð1Þg; ð15Þ

where ½Q� ¼ ½FZ�½WCW�½FZ�T; fGg ¼ ½FZ�f
1fug; ½P� ¼ ½FZ�½W1kNW�½FZ�: ½Wo2

ZW� is the eigenvalue
of the overall system. Here fZð0Þ2 � Zð1Þg is a perturbed modal displacement term which comes from
the perturbation zeroth order and perturbation first order.
In this study, damping term is considered in the overall system as a proportional damping that

consists of the mass and stiffness matrices of the overall system as ½WCW� ¼ a½I � þ b½Ww2
zW�; where

a; b are the damping coefficients. The overall structure is analyzed by solving Eq. (15). The
amplitude of rotor is large around the natural frequency of the system so that the non-linearity
has much influence on the vibration of the rotor. Accordingly, the development of the accurate
analytical method of non-linear dynamic response near the natural frequency is strongly desired in
the turbines of aircraft.

3. Response analysis by applying the method of multiple scales

To obtain the equation to perturbation first order by the method of multiple scales, the
following time scale is introduced:

Tn ¼ ent;

d

dt
¼
dT0

dt

@

@T0
þ
dT1

dt

@

@T1
þ
dT2

dt

@

@T2
þ? ¼ D0 þ eD1 þ e2D2 þ?; ð16Þ

d2

dt2
¼ D2

0 þ 2eD0D1 þ e2ðD2
1 þ 2D0D2Þ þ?:

By substituting Eq. (16) into Eq. (15), and by arranging with e, the equations can be
rewritten as

D2
0fZ

ð0Þg þ ½Wo2
ZW�fZð0Þg ¼ f0g;

D2
0fZ

ð1Þg þ ½Wo2
ZW�fZð1Þg ¼ �D0D1fZð0Þg � 2½Q�D0fZð0Þg � ½P�fZð0Þ3g þ fGg;

D2
0fZ

ð2Þg þ ½Wo2
ZW�fZð2Þg ¼ � D0D1fZð1Þg � ðD2

1 þ 2D0D2ÞfZð0Þg

� 2½Q�D1fZð0Þg � 2½Q�D0fZð1Þg � ½P�fZð0Þ2 � Zð1Þg: ð17Þ

The exciting frequency O is regarded around the first natural frequency o1: By noting the
detuning parameter s; the exciting frequency can be expressed as

O ¼ o1 þ es: ð18Þ
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Here, only the main resonance is considered by regarding there is no other resonance except the
main resonance. The solution of the first equation of Eq. (17) can be expressed as

fZð0Þg ¼ fAg expðio0T0Þ þ f %Agð�io0T0Þ: ð19Þ

According to the MS theory, by substituting Eqs. (18) and (19) into Eq. (17), the equation is
expressed in the single-d.o.f. form as

D2
0Z

ð1Þ
1 þ o2

1Z
ð1Þ
1 ¼ �2io1ðA0

1 þ Q11A1Þ � 3P11A
2
1
%A1 þ 1

2
G1 expðisT1Þ

� �
expðio1T0Þ

þ �2i
Xn

k¼2

okQ1kAk � 3
Xn

k¼2

P1kA2
k
%Ak

 !
expðiokT0Þ

�
Xn

k¼2

P1kA3
k expð3iokT0Þ þ c:c:; ð20Þ

where c:c: is conjugate complex term. The secular term is eliminated from the particular solution
of Eq. (20) by choosing A as

�2io1ðD1A1 þ Q11A1Þ � 3P11A
2
1
%A1 þ 1

2
G1 expðisT1Þ þ c:c: ¼ 0: ð21Þ

In a similar way, a condition to eliminate the secular term of the other component of equation to
m ¼ 2; 3;B2n is

� 2iomðD1Am þ QmmAmÞ � 3PmmA2
m
%Am þ c:c: ¼ 0;

fAg ¼ 1
2
fag expðibÞ; f %Ag ¼ 1

2
fag expð�ibÞ: ð22Þ

By dividing the equation into a real part and an imaginary part, the equation can be rewritten as

D1a1 ¼ a0
1 ¼ �Q11a1 þ

1

2o1
G1 sin g; a1D1b1 ¼ a1b

0
1 ¼

3

8o1
P11a

3
1 �

1

2o1
G1 cos g; ð23Þ

where g ¼ sT12b1. Similarly, Eq. (22) can be rewritten as

a0
m ¼ �Qmmam; amb

0
m ¼

3

8om

Pmma3m: ð24Þ

When the vibration is in the steady state (a0 ¼ g0 ¼ 0), by considering Eq. (24)

am ¼ 0; m ¼ 2; 3;B2n: ð25Þ

This result corresponds to the relation Z2; Z3;BZ2n ¼ 0 when the non-linear restoring force is
transformed into modal co-ordinates. By squaring Eq. (23), adding each term, and by considering
Eq. (25), the equation is arranged as

ðQ11a1Þ
2 þ sa1 �

3

8o1
P11a

3
1


 �2

¼
1

4o2
1

G2
1; 2m ¼ 0 ðm ¼ 2; 3;B2nÞ: ð26Þ

The frequency response of the system to the perturbation first order is obtained by solving
Eq. (26).
Next, a formulation procedure to obtain the equation to perturbation second order is

introduced. According to the second equation of Eq. (17), the particular solution for the single
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d.o.f. is obtained by eliminating the secular term

Zð1Þ1 ¼
1

o2
k � o2

1

2i
Xn

k¼2

okQ1kAk þ 3
Xn

k¼2

P1kA2
k
%Ak

 !
expðiokT0Þ

þ
1

9o2
k � o2

1

Xn

k¼1

P1kA3
k expð3iokT0Þ þ c:c: ð27Þ

Similarly, the particular solution of equation to m ¼ 2B2n is obtained by eliminate the secular
term as

Zð1Þm ¼
1

o2
k � o2

m

2i
Xn

k¼1

okQmkAk þ 3
Xn

k¼1

PmkA2
k
%Ak

 !
expðiokT0Þ

þ
1

9o2
k � o2

m

Xn

k¼1

PmkA3
k expð3iokT0Þ

þ
1

2ðo2
m � o2

1Þ
Gm expðisT1Þ expðio1T0Þ þ c:c: ðkamÞ: ð28Þ

By substituting Eqs. (19) and (28) into the third equation of Eq. (17), the equation can be solved.
However, it is quite complex to solve all of the equations to the m ¼ 2; 3;B2n component
equation. Thus, the equation is arranged according to the condition to eliminate the secular term
(the terms of iomT0):

�2iomD2Am þ Q2
mmAm þ

3

om

iQmmPmmA2
m
%Am þ

9

4o2
m

P2
mmA3

m
%A2

m þ c:c: ¼ 0: ð29Þ

When the vibration is in the steady state

dA

dt
¼ e

dA

dT1
þ e2

dA

dT2
¼ 0: ð30Þ

After substituting Eqs. (22) and (29) into Eq. (30), the arranged equation can be obtained. The
arranged equation can be rewritten in separated form as the real part and the imaginary part:

am
’bm ¼

3

8om

ePmma3m �
e2

2om

Q2
mmam �

9e2

128o2
m

P2
mma5m;

’am ¼ �eQmmam þ
3e2

8o2
m

QmmPmma3m: ð31Þ

When the vibration is in the steady state (a0 ¼ g0 ¼ 0), from Eq. (31)

am ¼ 0 ðm ¼ 2; 3;B2nÞ: ð32Þ

In accordance with the formulation to the perturbation first order, this result corresponds to
the relation Z2; Z3;BZ2n ¼ 0 when the non-linear restoring force is transformed into modal
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co-ordinates. From Eq. (32), the particular solution of the single d.o.f. Zð1Þ1 of Eq. (27) become

Zð1Þ1 ¼
1

8o2
1

P11A
3
1 expð3io1T0Þ þ c:c: ð33Þ

By substituting Eq. (19), Eq. (33) into the third equation of Eq. (17), the equation is arranged in a
simple form. Using the relation of secular term (the terms of io1T0), the single-d.o.f. equation can
be obtained as:

� 2io1D2A1 þ Q2
11A1 þ

3

o1
iP11Q11A

2
1
%A1 þ

9

4o2
1

P2
11A

3
1
%A2
1

þ
G1

4o1
iQ11 �

3

o1
P11A1 %A1 � s


 �
expðisT1Þ þ

3

8o2
1

P11G1A
2
1 expð�isT1Þ þ c:c: ¼ 0; ð34Þ

where A1 ¼ 1
2
a1 expðib1Þ. By substituting A1 into Eq. (34), the equation can be rewritten in

separated form as the real part and the imaginary part:

o1a1D2b1 þ
1
2
a1Q

2
11 þ

9

128o2
1

P2
11a

5
1 þ

G1

4o1
�s�

3

8o1
P11a

2
1


 �
cos g�

G1

4o1
Q11 sin g ¼ 0;

o1D2a1 �
3

8o1
P11Q11a

3
1 þ

G1

4o1
sþ

9

8o1
P11a

2
1


 �
sin g�

G1

4o1
Q11 cos g ¼ 0: ð35Þ

By substituting A1 ¼ 1
2
a1 expðib1Þ into Eq. (21), the equation can be rewritten in separated form as

the real part and the imaginary part

D1a1 ¼ �Q11a1 þ
1

2o1
G1 sin g; a1D1b1 ¼

3

8o1
P11a

3
1 �

1

2o1
G1 cos g: ð36Þ

When the vibration is in the steady state and considering the relation ðdA=dt ¼ eD1A

þe2D2A ¼ 0Þ;

D1A ¼ �eD2A; D1g ¼ �eD2g; D2b1 ¼ �D2g: ð37Þ

Using these relations, Eqs. (35) and (36) become in a single d.o.f., which shows the relation
between a and g:

AC cos gþ BC sin g ¼ CC ; DC cos gþ EC sin g ¼ FC ; ð38Þ

AC ¼
1

2
�

es
4o1

�
3eP11

32o2
1

a21


 �
G1; BC ¼ �

G1e
4o1

Q11; DC ¼ �BC ;

where

�CC ¼ a1
e
2

Q2
11 � o1sþ

3

8
P11a

2
1 �

9e
128o2

1

P2
11a

4
1


 �
;

EC ¼
1

2
�

es
4o1

�
9eP11

32o2
1

a21


 �
G1; FC ¼ o1Q11a1 �

3e
8o1

Q11P11a
3
1:
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By eliminating the term g from Eq. (38), the following polynomial equation of a2 is obtained:X7
n¼0

Cnðe;s;o1;P11;Q11;G1Þa2n ¼ 0: ð39Þ

The frequency response of the system to the perturbation second order is obtained by solving
Eq. (39). From Eq. (39), the solution of the equation of motion to the first order of e is obtained.
The response can be expressed for the single d.o.f. as

Z1 ¼ a1 cosðOt � gÞ þ e
1

32o2
1

P11a
3
1 cosð3Ot � 3gÞ

� 
; ð40Þ

where g is obtained from Eq. (38). The time response of the equation of motion can be obtained
by changing Eq. (40) into physical co-ordinates.

4. Results of the numerical examples

In this section, response analysis is presented to demonstrate the application of the proposed
method. The frequency response is obtained by sweeping up the frequency gradually. The
responses of the proposed method are compared with those obtained by the classical analysis
technique for accuracy validation.
A non-linear rotor system, which is shown in Fig. 2, is considered. The rotor is considered to be

a uniform beam and the casing is also considered to be a uniform beam approximately for the
simplicity of calculation. Generally, there is a cross-coupling terms in the ball bearing. The cross-
coupling terms in the bearing are ignored for the simplified model of bearing to verify the effect of
non-linearity. The properties of the rotor system are tabulated in Table 1.
The rotor and casing are modelled by the eight beam elements. The modal damping ratios of

the rotor system are given by a; b ¼ 0:05:
Table 2 shows the natural frequency of rotor system to the 5th mode in rad/s by the proposed

method. The second natural frequency is almost three times the first natural frequency of the
system. And the other frequencies are apart from each other. A rotor is defined as circular when
the second moment of area of its cross-section about any axis through the center of area is

Fig. 2. Non-linear rotor model for analysis.
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invariable. This means that the rotor is a circular type where the stiffness of the rotor is same in
any direction. In this study as a case of analysis, the general circular-type rotor is adopted to
verify the effect of the non-linear characteristics of the system. And the response is analyzed
around the first natural frequency (=141.02 rad/s).

4.1. Results of the non-linear response analysis

Responses of the non-linear rotor system are reviewed in frequency domain and time domain.
In the analysis, the exiting force caused by unbalance of rotor is given the value 50 on the 5th
nodal point of substructure 1. The perturbation parameter for the non-linearity is adopted as a
small value e ¼ 0:1: First, as a numerical result of response analysis, the differences of the linear
and non-linear responses in frequency domain and time domain are described. Linear and non-
linear responses at the center of rotor in node 5, by the proposed and direct numerical methods,
are presented in Fig. 3(a), (b) and (c). Responses are obtained using the perturbation first order
approximation by the proposed method when the low 5 modes are adopted. To evaluate the
proposed technique, the responses need to be compared with the other representative non-linear
analyzing methods, such as the direct integration method. Using the FEM, the equation of
motion of rotor system, which is composed of rotor-bearing casing, is obtained. Numerical
integration is carried out conveniently in terms of first order equation, which is obtained from the
equation of motion by FEM. Thus, the obtained non-linear equation is recast in state form.
Then, the fourth order Runge–Kutta method is used to obtain the response against
unbalance excitation. Fig. 3 reveals that there is a notable difference between the linear and
non-linear response in time domain and frequency domain. Thus, it is important to figure out the
non-linear response for the exact design and the diagnosis of the system. From Fig. 3(a), the
non-linear response shows the typical response of hard spring-type non-linear restoring force
(when f ¼ 50N, o1 ¼ 141:02 rad/s).

Table 1

Properties of the rotor system

Rotor, casing length (mm) 1.6 103

Rotor diameter (mm) 3.0 102

Casing diameter (mm) 1.0 102

Young’s modules of rotor and casing (N/m2) 2.1 1011

Density of rotor and casing (kg/m3) 7.81 104

Bearing coefficient (N/m) 6.69 104

Casing support coefficient (N/m) 1.0 1010

Table 2

Natural frequencies of rotor system (rad/s)

Frequency no. First Second Third Forth Fifth

Natural frequency 141.02 471.28 802.95 1149.40 1256.20
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The results of the time response by the proposed method, as shown in Fig. 3(b) and (c), are in
very good agreement with those obtained by the direct integration method. However, the linear
responses are larger than the non-linear responses, as shown in Fig. 3(b). As can be noticed in
Fig. 3(a), the amplitude of the linear response is larger than the non-linear response near the
natural frequency.
It can be understood that as the amplitude of the frequency response grows, even the exciting

frequency exceeds the first natural frequency because of the effect of non-linearity, as can be
observed in Fig. 3(a).
Time domain responses are compared, as shown in Fig. 4(a), (b) and (c), when the system is

excited with an excitation frequency of 155 rad/s where the first natural frequency of the system is
141.02 rad/s, which is a little larger than the first natural frequency of the system. The time
responses are obtained using the method of multiple scales by adopting 5 modes at nodes 1 and 5

Fig. 3. Comparing the response of linear and non-linear approximation by the proposed method and direct numerical

method: (a) linear and non-linear frequency responses by the proposed and numerical methods, (b) comparison of time

history–displacement at node 5 in substructure 1 (when O ¼ 140 rad/s), and (c) comparison of time history–

displacement at node 5 in substructure 1 (when O ¼ 150 rad/s).
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of substructure 1. And those responses are compared with the responses of the direct integration
method. The response of the direct integration method is obtained from the overall equation of
the system in physical co-ordinates, which is derived by FEM. Compared with the amplitude of
the response by direct integration method, it can be observed at the selected point that
comparatively accurate non-linear responses of the system are simulated with the corresponding
phase. Nevertheless, there is a little difference of responses at node 1 of substructure 1, as shown
in Fig. 4(a). Because of the bearing support, the response at node 1 of substructure 1 becomes
relatively smaller than the response at the center of the rotor. Hence, it can be understood that the
non-linear response shows good agreement with the response of the direct integral in the high
amplitude range, which shows the non-linear characteristics well. This result can also be observed
in Fig. 5(a) and (b), which shows the difference of the frequency component.
The corresponding Fast Fourier transform (FFT) analysis results of time response at nodes 1

and 5 of substructure 1 are shown in Fig. 5(a) and (b), which are calculated by the direct

Fig. 4. Comparison of time responses (when O ¼ 155 rad/s): (a) displacement at node 1 in substructure 1, (b)

displacement at node 5 in substructure 1 and (c) Frequency response at node 5 in substructure 1. (—) Presented method,

(- - - - -) integration method.
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numerical integration and the proposed method. Each time response is obtained by the same
simulation condition as in Fig. 4(a) and (b), and those are analyzed by FFT to observe the
frequency component. The power spectrum is expressed in a logarithm display to confirm the non-
linear frequency component easily in the diagram. Investigation of both results reveals
comparatively good agreement. Relatively accurate responses can be simulated with 5 modes
comparing with result of the direct integration method. The non-linear frequency element (3O) is
observed in each spectrum where O is the exciting frequency. Nevertheless, it is observed that the
spectrum of non-linear frequency element (3O) of the proposed method is smaller than the
spectrum obtained by the direct numerical integration method at node 1 of substructure 1. It is
estimated that the response of the proposed method shows good agreement in high amplitude
range because non-linear restoring force is increased rapidly in large displacement area.
Accordingly, there might arise a difference in low amplitude range compared with the direct
integration method. There is no higher non-linear frequency element (5O) in the presented method
where the result of the integration method shows one. Because the proposed method
approximated the solution to the frequency (3O) element, there is no frequency element (5O).
The frequency responses, which are analyzed using the proposed method to the perturbation

first order and the second order, are presented in Fig. 6. Those responses are obtained at the nodal
point 5 of substructure 1. Five modes are adopted for each method. There is a little difference in
high amplitude range between the response of the perturbation first order and the second order. It
is estimated that the response of the perturbation second order is a more exact solution.
Those frequency responses are compared by changing the adopting modes according to the

perturbation order, as shown in Fig. 7(a) and (b). The frequency responses that are calculated
by perturbation first order approximation and perturbation second order approximation at the
nodal point 5 of substructure 1 when adopting 5 modes and total modes (18 modes) are presented
in Fig 7(a) and (b). It can be observed that the presented method simulated well the non-linear
characteristic in comparatively good accuracy by adopting only low 5 modes compared with

Fig. 5. Comparison of frequency components of the response by direct integration method and the proposed method:

(a) response at node 1 in substructure 1 (when O ¼ 155 rad/s) and (b) response at node 5 in substructure 1 (when

O ¼ 155 rad/s).
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Fig. 6. Comparison of frequency response by the perturbation order.

Fig. 7. Frequency response by changing the adopting modes according to the perturbation order: (a) frequency

response using the first order approximation and (b) frequency response using the second order approximation.
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responses of adopting all modes. From this result, it is believed that the non-linear restoring force
term can be easily transformed into modal co-ordinates while retaining its accuracy with its lower
modes according to the proposed procedure.
The frequency responses, which are analyzed at node 5 of substructure 1 using the proposed

method and the direct integration method with the perturbation first order and the second order,
are presented in Fig. 8(a) and (b). As in Fig. 7, this case also adopted only the low 5 modes in the
method presented. It can be observed that the results of each method simulated well the non-linear
characteristic in comparatively good accuracy. The response of the proposed method and the
response of the direct integration method are in good agreement, keeping the accuracy, even
though there is some error in the large amplitude range.
As shown in Refs. [7,8], ‘‘incorrect solutions’’, which do not exist in the direct numerical

integration response, appear to be the solution when using the proposed method approximating
to the second order. Though ‘‘incorrect solutions’’ appear in the large amplitude area around
0.03m or more of the frequency response curve of Figs. 7(b) and 8(b), they are neglected because
it is unrelated in substance with this study, so it is not shown on the graph.
It can be observed that the results of each method simulated well the non-linear characteristic in

comparatively good agreement with the results of direct integration as shown in Figs. 7 and 8.

Fig. 8. Comparison of frequency response by the perturbation order with direct integration method: (a) frequency

response using the first order approximation and (b) frequency response using the second order approximation
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Especially, there is a good agreement with keeping the accuracy of the response between the
proposed method of the perturbation second order and direct integration method, as shown in
Fig. 8(b).

4.2. Computing efficiency of the proposed method

To evaluate the effectiveness of the proposed technique, the responses need to be compared
with the other representative non-linear analyzing methods, such as the harmonic balance
method.
The frequency responses, which are analyzed using the method of multiple scales with the first

order, second order and harmonic balance method, are presented in Fig. 9. Those responses are
obtained at the nodal point 5 of substructure 1. Five modes are adopted for each method. It can
be observed from Fig. 9 that the results of each method simulated well the non-linear
characteristic in comparatively good accuracy. Especially, the response of the perturbation
second order in accordance with the multiple scales method and the response of the harmonic
balance method are in good agreement by keeping the accuracy. From this result, it can be
concluded that an analytical result obtained by the proposed method can secure the simulation
accuracy.
Table 3 shows the maximum values of non-linear frequency response at the middle of rotor by

changing its numbers of adopting modes. The values of the non-linear frequency response are
investigated according to the analytical methods. To prove the computing efficiency, those values
are compared with results of the direct integration method and the harmonic balance method,
which are obtained by same calculation condition against the unbalanced excitation. Calculation
accuracy of the proposed method is evaluated to show the effectiveness of the proposed method.
The deviation of the calculation error of the analysis is defined as

deviation ¼
Value of direct integration method� Value of analytical method

Value of direct integration method
 100ð%Þ: ð41Þ

The deviations of the result to the direct integration method are 71.7%, 72.3% in the case of
proposed method with perturbation first order, where the number of adopting modes is 5, 18,

Fig. 9. Comparison of frequency responses with the harmonic balance method.
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respectively. The deviation of the result to the direct integration method are 15.1%, 15.7% in the
case of proposed method with perturbation second order where the number of adopting modes is
5, 18, respectively. The deviation of the result to the direct integration method is 48.0% in the case
of the harmonic balance method. The responses within 16% deviation error are obtained by the
proposed analytical method with perturbation second order. It is believed that the accuracy of the
response within 16% deviation error for the system is an effective analytical method.
Next, the calculation time is considered to verify the effectiveness of the proposed method. As a

case, the calculation time for the responses of Table 3 is examined. The proposed method takes
312 and 368 s to calculate the frequency response by the perturbation second order within 16%
deviation error, while the direct integration method takes 1370 s to compute the same response by
using the personal computer Logix IBM Co., the harmonic balance method takes 353 s to
calculate the frequency response within 48% deviation error. As a result, it can be observed in this
study that a drastic reduction in computational time can be obtained while retaining the accuracy
of the solution. This is a critical factor in the analysis of the structural dynamics with a large
number of d.o.f. systems. It is believed that the proposed method can analyze the response of the
complex system by keeping the accuracy of the solution compared with the direct numerical
integration.

5. Conclusions

In this paper, the vibration analysis of a non-linear mechanical system is theoretically
formulated applying the method of multiple scales. The formulation is concerned with reducing
the number of d.o.f. for each substructure by modal substitution. All the substructures are then
re-assembled together and the non-linear response of the overall system is obtained against the
harmonic excitation. This method is applied to a non-linear rotor system. The performance of the
proposed method is compared with respect to the computational accuracy and time with the direct
integral method. It is shown that non-linear responses can be efficiently calculated according to
the selected number of vibration modes. And the non-linear characteristic of the non-linear
restoring force is well simulated. As a result, the proposed method is proved to be an applicable
technique for analyzing the dynamics of non-linear structure. Moreover, it is believed that those
properties of the results can be utilized in the dynamic design of the non-linear system.

Table 3

Comparison of computing efficiency of the methods

Analysis method Amplitude of

response (m)

Deviation

(%)

Calculation

time (s)

Proposed method (perturbation first order) with 5 mode 0.0261 71.71 240

Proposed method (perturbation second order) with 5 mode 0.0175 15.13 312

Proposed method (perturbation first order) with 18 mode 0.0262 72.36 287

Proposed method (perturbation second order) with 18 mode 0.0176 15.78 368

Harmonic balance method 0.0225 48.02 353

Direct integration method (FEM) 0.0152 0 1370
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